skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vakki, Waltteri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H 2 production, which overcomes barriers on anode H 2 O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm −2 ) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoS x catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s −1 . The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m −2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H 2 production practical for the first time. 
    more » « less